skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Figueroa, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a detailed x-ray magnetic circular dichroism (XMCD) study of the magnetic properties of Gd-doped EuO thin films, synthesized via molecular-beam epitaxy with Gd doping levels up to over 12%. The impact of Gd doping on the electronic and magnetic behavior of EuO is studied using XMCD and magnetometry. Gd doping significantly enhances the Curie temperature ( T C ) from 69 K in undoped EuO to over 120 K, driven by increased carrier density, while preserving the high quality of the single-crystalline films. At higher doping levels, a plateau in T C is observed, which is attributed to the formation of Eu-Gd nearest-neighbor pairs that limit dopant activation. We also observe a distinctive “double-dome” structure in the temperature-dependent magnetization, which we attribute to both the ferromagnetic ordering of Eu 4 f moments at lower temperatures and the influence of conduction electrons via 4 f 5 d exchange interactions at higher temperatures. These findings provide key insights into the mechanisms of carrier-induced magnetic transitions. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. In September of 2017, the island of Puerto Rico (PR) was devastated by a category 5 hurricane, Hurricane Maria. The island experienced complete blackout, and full restoration of the electrical system took nearly 11 months to complete. Therefore, it is of high interest to re-develop the infrastructure at the generation, transmission, and distribution levels so that it is hurricane-resilient. This paper describes the methodologies behind developing a more resilient electric infrastructure using a co-optimized expansion planning (CEP) software. First, a model of the PR electric power system was developed to perform long term CEP studies. The CEP tool developed seeks the minimum total cost of the PR system in a 2018-2038 planning horizon while exploring various levels of expansion investment options. The CEP also models the system under extreme events (i.e., hurricanes) to allow for data-driven resilience enhancement decisions. Second, the paper summarizes infrastructure visions that contain resilience investment options; the visions differ in terms of invested amounts of distributed generation and centralized resource. Lastly, key findings from these visions are reported and the CEP model performance is discussed. 
    more » « less